【第一作者】
[9] L. Qiao, K. Zuo, Regularity relative to a hereditary torsion theory for modules over a commutative ring, J. Korean Math. Soc., 2022, 59(4): 821~841.
[8] L. Qiao, Q. Shu, F. Wang, A characterization of Prüfer v-multiplication domains in terms of linear equations, J. Commut. Algebra, 2020, 12(3): 435~445.
[7] L. Qiao, F. Wang, A half-centered star-operation on an integral domain, J. Korean Math. Soc., 2017, 54(1): 35~57.
[6] L. Qiao, F. Wang, w-linked Q0-overrings and Q0-Prüfer v-multiplication rings, Comm. Algebra, 2016, 44(9): 4026~4040.
[5] L. Qiao, F. Wang, A hereditary torsion theory for modules over integral domains and its applications, Comm. Algebra, 2016, 44(4): 1574~1587.
[4] 乔磊. 商范畴与hom函子. 四川师范大学学报 (自然科学版), 2016, 39(2): 175~179.
[3] L. Qiao, F. Wang, A Gorenstein analogue of a result of Bertin, J. Algebra Appl., 2015, 14(2), 13pp.
[2] 乔磊, 王芳贵. w-模范畴上的2个函子及其应用. 四川师范大学学报 (自然科学版), 2015, 38(4): 481~486.
[1] 乔磊, 王芳贵. 挠理论局部化技巧. 四川师范大学学报 (自然科学版), 2013, 36(2): 193~197.
【通讯作者】
[6] 王芳贵, 乔磊, 周德川. 强Prüfer环的同调刻画. 数学学报 (中文版), 2021, 64(2): 311~316.
[5] F. Wang, L. Qiao, A new version of a theorem of Kaplansky, Comm. Algebra, 2020, 48(8): 3415~3428.
[4] F. Wang, L. Qiao, Two applications of Nagata rings and modules, J. Algebra Appl., 2020, 19(6), 15pp.
[3] F. Wang, L. Qiao, A homological characterization of Krull domains II, Comm. Algebra, 2019, 47(5): 1917~1929.
[2] F. Wang, L. Qiao, H. Kim, Super finitely presented modules and Gorenstein projective modules, Comm. Algebra, 2016, 44(9): 4056~4072.
[1] F. Wang, L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc., 2015, 52(4): 1327~1338.
【其他】
[7] 宋菲菲, 乔磊, 夏伟恒. 交换环上的w-弱平坦模与w-弱内射模. 西北师范大学学报 (自然科学版), 2022, 58(5): 12~24.
[6] 夏伟恒, 乔磊, 宋菲菲. 交换环上的w-P-平坦模及其应用. 吉林大学学报 (理学版), 2022, 60(2): 269~276.
[5] H. Kim, L. Qiao, F. Wang, The class of weak w-projective modules is a precover, Bull. Korean Math. Soc., 2022, 59(1): 141~154.
[4] Q. Shu, X. Wang, L. Qiao, Extension of free sets over commutative semirings, Linear Multilinear Algebra, 2021, 69(16): 3019~3030.
[3] 熊涛, 王芳贵, 乔磊. 余纯投射维数换环定理. 吉林大学学报 (理学版), 2018, 56(6): 1345~1358.
[2] 徐龙玉, 胡葵, 乔磊, 万吉湘. 非奇异环的同调刻画. 四川师范大学学报 (自然科学版), 2016, 39(4): 514~517.
[1] 徐龙玉, 万吉湘, 乔磊. 模的fann-内射维数及fann-平坦维数. 四川师范大学学报 (自然科学版), 2016, 39(1): 33~36.