学术论文

 

1. X.P. Ding, F.Q.Xia, Generalized H-KKM type theorems in H-metric spaces with applications , Applied Mathematics and Mechanics, 22(10)1029-1036,2001.

2. X.P. Ding, F.Q.Xia, A new class of completely generalized quasi-variational inclusions in Banach spaces, Journal of Computational and Applied Mathematics, 147,369-383,2002.  

3. X.P.Ding, F.Q.Xia, Equilibria of nonparacompact generalized games with FC-majorized correspondences in G-convex spaces, Nonlinear Analysis TMA, 56, 831-849,2004.

4. F.Q.Xia, X.P. DingPredictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Applied Mathematics and Computation,188, 173-179, 2007.

5. F.Q.Xia, N.J.Huang, Variational inclusions with general H-monotone operators in Banach spaces, Computers and Mathematics with Applications, 54, 24-30, 2007.

6. F.Q.Xia, N.J.Huang, A new system of generalized complementarity problems in Banach spaces, Taiwanese Journal of mathematics, 12(2), 435-446, 2008.

7. F.Q.Xia, N.J.Huang, A projected subgradient method for solving generalized mixed variational inequalities, Operations Research Letters, 36, 637-642, 2008.

8. F.Q.Xia, N.J.Huang, Algorithm for solving a new class of general mixed variational inequalities in Banach spaces,  Journal of Computation and Applied Mathematics,220(1-2), 632-642, 2008.

9. F.Q.Xia, N.J.Huang, Auxiliary principle and iterative algorithms For Lions-Stampacchia variational inequalities, Journal of Optimization Theory and Applications, 140, 377-389, 2009.

10. Q.B.Zhang, F.Q.Xia,  Mixed approximation for nonexpansive mapping,  Abstract and Applied Analysis, 2010, doi: 10.1155/2010 / 763207.

11. F.Q.Xia, N.J.Huang, A projection-proximal point algorithm for solving generalized variational inequalities, Journal of Optimization Theory and Applications,150,98-117,2011.

12. F.Q. Xia, Y .Z .Zou, A Projective splitting algorithm for solving generalized mixed variational inequalities, J. Inequalities with Applications, 27,1-14, 2011.

13. 夏福全,黄南京,一般混合变分不等式解的捆集近似算法,数学物理学报, 31A(4),866-879, 2011.

14. F. Q. Xia, N. J. Huang, An inexact hybrid projection-proximal point algorithm for solving generalized mixed variational inequalities, Computers & Mathematics with Applications, 62, 4596-4604, 2011.

15. X. B. Li, F. Q. Xia, Levitin-Polyak well-posedness of generalized mixed variational inequality in Banach spaces, Nonlinear Analysis TMA, 75(4),2139-2153,2012.

16. 朱莉,夏福全,广义混合变分不等式的Levitin-Polyak适定性,数学物理学报,32A(4), 633-6432012.

17. F.Q. Xia, Q.B. Zhang and Y.Z.Zou, A New Iterative Algorithm for Variational Inclusions with H-Monotone Operators, Thai Journal of Mathematics, 10(3) , 605–616, 2012.

18. L.Zhu, F.Q.Xia, Scalarization method for Levitin-Polyak well- posedness of vectorial optimization problems, Mathematical Methods of Operations Research, 76, 361-375, 2012.

19. X. B. Li, F. Q. Xia, Hadamard well-posedness of a general mixed variational inequality in Banach space, Journal of Global Optimization, 56(4) 1617-1629, 2013.

20. F.Q.Xia, T. Li and Y.Z.Zou, A projection subgradient method for solving optimization with variational inequality constrants, Optimization Letters,8, 279-292, 2014.

21. G.J. Tang , F.Q. Xia, Strong convergence of a splitting projection method for the sum of maximal monotone operators, Optimization Letters, 8, 1313–1324, 2014.

22. F.Q. Xia, C.F. Wen, Levitin-Polyak well-posedness of generalized variational inequality with generalized mixed variational inequality constraint, Journal of Nonlinear and convex Analysis, 10(16), 2087-2101, 2015.

23. K. Tu, F.Q. Xia, J.C. Yao, An iterative algorithm for solving generalized variational inequality problems and fixed point problems, Applicable Analysis, 95(1),209-225,2016.

24. K. Tu, F.Q. Xia, A Projection-type Algorithm for Solving Generalized Mixed Variational Inequalities, Acta Mathematica Scientia, 36B(6):1619–1630,2016.

25. 彭明燕, 夏福全, 双层变分不等式的Levitin-Polyak适定性, 应用数学学报  3, 362-372,2016.

26F.Q. Xia, Q.H. Ansari and J.C. Yao, A new incremental constraint projection method for solving monotone variational inequalities, Optimization Methods and Software, 32(3), 470-502,2017SCI

27、K. Tu, H. B. Zhang and F. Q. Xia,A new alternating projection-based predictioncorrection method for structured variational inequalities, Optimization Methods and Software, 34(4),707-730, 2019.

28W.Y.Wang, F.Q.Xia and Y.C.Liu, Two new modified extragradient type methods for solving variational inequality problems and fixed point problems, Journal of Nonlinear and Convex Analysis, 20(11), 2347-2370, 2019.

29、Y. C. Liu, F.Q. Xia, Variable smoothing incremental aggregated gradient method for nonsmooth nonconvex regularized optimization,  Optim.  Lett.,  15, 2147–2164, 2021. (SCI)

30、W. Y. Wang, F. Q. Xia, Random and cyclic projection algorithms for variational inequalities, Optimization, 71(6), 1677–1707, 2022.(SCI)

31、Y. C. Liu, F. Q. Xia, Linear convergence of proximal incremental aggregated gradient method for nonconvex nonsmooth minimization problems, Applicable Analysis,  101( 9), 3445–3464, 2022. (SCI)

32、W. Y. Wang, F. Q. Xia, K. Tu, Inertial-type incremental constraint projection method for solving variational inequalities without Lipschitz continuity, Numerical Algorithms, 89, 17691798, 2022. (SCI)

33、Z. C. Yang, F. Q.Xia, K. Tu, Variance reduced moving balls approximation method for smooth constrained minimization problems, Optimization Letters, 2023 (SCI)

34、Y. C. Liu, F. Q. Xia, Proximal variable smoothing method for three-composite nonconvex nonsmooth minimization with a linear operator, Numerical Algorithms, 2023  (SCI)

35、M. J. Wang, F. Q. Xia, Variance reduced forward-reflected-backward algorithm for solving nonconvex finite-sum mixed variational inequalities, Journal of Industrial and Management Optimization, 2024 (SCI)

36、Z. C. Yang, F. Q. Xia, K. Tu, M. C Yue, Variance reduced random relaxed projection method for constrained finite- sum minimization problems, IEEE Transactions on Signal Processing, 2024. (SCI)




 

Copyright © 2024 http://msi.sicnu.edu.cn 四川师范大学数学与软件科学学院